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A new approach to the computation of bifurcation diagrams is illustrated on axi-
symmetric equilibria of liquid droplets and bridges. The new technique has an ar-
chitecture that solves boundary-value problems in parallel and delivers a global bi-
furcation diagram, capturing isolated branches. In contrast, conventional techniques
deliver solutions in sequence using local path continuation. A suitable mathematical
formulation for the classical problem of predicting shapes of droplet and bridge equi-
libria is introduced and it its shown how the new technique yields global diagrams.
Properties of these diagrams allow families of equilibria to be organized in a way
that reveals common structures 2000 Academic Press
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1. INTRODUCTION

In this paper we will illustrate a new computation technique for the efficient utilizatic
of parallel resources, using the example of liquid figures of equilibrium. We will show th
the new computational approach not only provides a complete global picture of bifurcal
problems but also helps to relate physical problems with different parameters.

The computational approach, introduced by [10, 11, 14], is based on some simple it
from the theory of ordinary differential equations (ODEs), combined with the piecewi
linear (PL) algorithm [1], and will be referred to henceforth as the parallel simplex algoritt
(PSA). In contrast to path-continuation techniques, which solve for equilibria in sequel
in tracing a branch, the PSA simultaneously resodlksquilibria lying onall branches (in
a given domain). Although simple shooting remains at the core of the PSA, the combina
of shooting with the PL algorithm offers a good alternative to traditional methods if tl
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underlying ODE is not very sensitive to the perturbation of initial conditions. In this par
we describe the application of the PSA to such a problem and refer to other applicatior
mechanics where it could be used successfully.

Instead of giving a general description (which is provided by the above-cited papers)
will proceed in Section 2 by formulating the problem of determining the shape of dropl
and bridges as an initial-value problem (IVP). In Section 3 we will apply the PSA to bridg
and droplets and describe the implementation. Section 4 is devoted to the descriptior
discussion of results of computations.

The PSA can be directly applied to two-point boundary-value problems (BVPS) ass
ated with ODEs. Assuming that the latter is of even order (which is most often the ¢
in mechanics), it is equivalent to(t) = f (x(t), 1), x e R?", A e R, t [0, 1]. Let us re-
group the equations so that the initia 0) conditions apply to the first components
X0 =4a,i=1,2,...,n)andfar-endt{= 1) conditions apply to the those with indicgs
x, (D =hi,i=12,...,n), wherea, by are given scalars. We denote the remaining initis
conditions owariablesby vi_,=x;(0),i=n+1,n+2,...,2n. The (+ 1)-dimensional
space spanned by the variables and the paramét@alled the global representation spact
(GRS). Using any convergent forward integrator for the IVP, we can compute the fi
valuesx,, (1), (i =1, 2, ..., n) asfunctionsof v; andi: x,, = g; (v1, v2, ..., vn, A) and then
solve the algebraic system

G H—b =0 i.j=12...n v ehvi]. re’r] (1)

by the PL algorithm [1] in the prescribed ¢ 1)-dimensional domain of the GRS (defined
by the constants with superscript in (1)). Geometrically, (1) describes the intersection:
hyper-surfaces in thea(+ 1)-dimensional space, yielding typically (locally) 1-dimensiona
solution sets, thus branches. These branches will appear as polygons, due to the piec
linear approximation. (We remark that the variables can have a far more general intel
tation in the PSA,; however, the above version is sufficient to introduce the most impor
concepts.)

Although the key ideas of the PSA are rather easily described, this approach is not
widespread in the computational community. It requires in many cases massive hard
capabilities, but so do path continuation methods. However, one key difference betwee
two approaches is historic. Present, very efficient, and sophisticated path continuation ¢
[8, 9, 30] evolved on the basis of earlier, less refined ones which, in turn, were the di
successors of hand-computed methods. There is no such “baggage” associated wi
PSA, since a small-scale version would be not only cumbersome but of little use. The o
reason for the lack of tradition is the recent appearance of parallel computers and
possibility of parallel computation on distributed networks. Parallel computation is at 1
core of the PSA, although for test purposes, it can be run on a single node. We remark
there exist other algorithms that combine search with path continuation [17]; however,
search is restricted to solution points rather than branches.

Application of the method can be visualized without technical details. System (1) car
resolved simultaneously in any subdomain of the GRS. “Simultaneous resolution” stanc
relation to “continuation” as photographic imaging stands to freehand sketching. The pi
of a film negative are developed simultaneously (in parallel) in a chemical bath, wherea:
hand sketch requires a sequence of strokes with each pointin a stroke laid down sequen
Developing this analogy further, we note that bifurcation diagrams obtained by continua
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are like hand sketches where the pencil cannot lift whereas simultaneous resolution
deliver families of equilibria that are unconnected (e.g., isolas). These features make
PSA an optimal candidate for the relatively fast, global understanding of low-dimensio
bifurcation problems [10, 11, 14, 19]. Limitation of the method to low-dimensional prol
lems is due to computational demand and is discussed in the concluding section.

Liquid equilibria problems are low dimensional. The GRS is only 2-dimensional for
wide range of physical situations, as seen in Sections 2 and 3. Scientific interest in fig
of equilibrium can be traced back to the time of Plateau [28]. Mathematicians have b
stimulated by the minimal surface problem and by capillary surface interfaces [13, 37,
Physical chemists have made early computations of shapes. Motivation has ranged
improving measurement devices where a meniscus is involved [3] to measuring sur
tension using droplet and bubble methods [2, 4]. Recent interest from the enginee
community has focussed on materials [5, 7] and microgravity applications [26, 27]. T
common feature here is that liquid shapes are dominated by surface tension (large cap
length). In these papers, by concentrating on different physical aspects (such as effec
gravity, asymmetric boundary conditions, etc.) unifying features easily recognized in
setting of the GRS have been obscurred. Our present goal is to show that the PSA not
can utilize parallel computing resources very efficiently in order to solve such problems
also can help to understand the relationship among them by putting bifurcation diagr.
in a common geometrical setting.

2. FORMULATION OF THE GOVERNING EQUATIONS

2.1. Liquid Shapes as IVPs: A Dynamical Systems Approach

Static shapes of surfaces that contain a liquid are governed by the normal stress ba
across the surface, called the Young—Laplace equation. This requires the presstirte
liquid to be proportional to the surface tensioand to the sum of the principal curvatures,
K1+ k2 (cf. [23, 27] or [40]),

p = o(k1+k2). (2)

A pressure within the bridge that is below that of the surroundings (vacuum) is negat
For surfaces of revolution off@ plane curve (cf. Fig. 1a), the principal curvatures can b
expressed in terms af, the (counterclockwise positive) angle with respect torttaxis
(i.e., tana = z/1),

k1 = Sin() /1, 3

K2=d!.

Arclengths is the independent variablé=£d/ds) in this “tangent-angle” formulation, a
common one for computing capillary equilibria [2]. In terms@fthe Young—Laplace
equation (2) takes the form of the ODE system

a=p+Bz—sinw)/r
f = coqa) (4)
Z = sin(a),
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FIG.1. Definition sketches for axisymmetric figures of equilibrium: (a) space-curve geometry or “kinematic
for the IVP; (b) liquid bridge BVP; (c) liquid droplet BVP.

where reduced quantities have been used and the effect of ggadting on the liquid in the
z direction has been included. In particular, dimensional variables, denoted with overk
are related to the reduced variables by

r=r/R, z /R, s=5/R, Kk =kR, p

pPR/o.

The Bond numbeB = pg R? /o depends on the liquid density(relative to surroundings)
and a contact radiur.

The local equations (4) can be integrated o obtain the total reaction forde (F = F_/
(7 Ro)) exerted by any segment of surface-bounded liquid of lemgth

F = 2r sine — pr2 + B{V(2) — zr?}, (5)

whereV (2) = foz r2dzrepresents the scaled volume of the segmént (\7/ R®). Note that
F is a constant in the integral constraint (5).
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In the special no-gravity cas®&& 0), (4) reduces to

a = p—sin(a)/r

. (6)

I = coqw).
The third equation decouples from the system and can be integrated separatelyspice
known. The solution structure and the dynamics are completely determined by (6), wt
turns out to be completely integrable [18] with first integral

F = 2r sina — pr2. (7)

Equation (7) is recognized as tle= 0 subcase of the force balance (5).

Individual trajectories appear kvel set®f F in thear phase plane. In fact, the topology
of the phase space is that otglinder since« is 27-periodic, so we will consider only
a € [—m, ]. The fixed points of the flow are associated with extremd aind can be
found by letting the derivatives vanish,

a=rf=0, (8)

7 1
(a,1) = (E, B)
(@,r) = <—” —1>
9 27 p .

Here, even though the formulation derives from a cylindrical coordinate systerfi)( the
interpretation of system (4) as an IVP clearly permits negativehe fixed points appear
in therz physical space as straight vertical linesrat +1/p. These are right-circular
cylinders in 3D space. We can identify other special solutions by requiring the curdatur
to be constant, leading to

leading to

(9)

r = 28 (10)
p

These solutions appear in thespace as circles with center on thexis and radius equal
to 2/p. The liner =0 in the phase space is singular since 0 is only admitted a& = 0.
At the intersection point we have= p/2. The special trajectory (10) and the singular so
lution separate the phase space into an open domain and two closed domains, the latt
containing the fixed points. The eigenvalues of the linearized map provextgpke+i / p,
purely imaginary, so the fixed points are elliptic and there are closed orbits encircling thi
remaining in the closed domains.

Based on the above information we can draw the global phase portrait of the system
revealing four types of trajectories (cf. Fig. 2a). Interpretations of these trajectories in
phase planer, the physical planez and as surfaces of revolution are listed in Table 1. W
note that these results are classical. All the trajectories can be expressed in closed frc
terms of elliptic integrals of the first and second kind [15, 20].

The casep =0 will be of special interest. In this case, since fixed poitescape to
infinity, the B, C, andD-type orbits become similar and only one kind of orbit remain
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FIG. 2. Global phase portrait foB = 0: (a) typical case wittp > 0; (b) degenerate case with= 0.

(Fig. 2b). In therz plane, this trajectory represents a catenary. As a surface of revoluti
it is known as a catenoid. This result is consistent with a classical theorem of differer
geometry that the only surface of revolution that is a minimal surface (vanishing me
curvature) is the catenoid [21]. Based on the classification for the IVP orbits we n
proceed to explore the global bifurcation diagram for the BVP.
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TABLE |
Different Types of Solutions

Type ar plane rz plane 3D surface
A Fixed points Straight lines Cylinder
B Closed orbits Oscillations Unduloid
C Separatrix Circle Sphere
D Open, oscillating orbits Looping Nodoid

2.2. Liquid Equilibria as BVPs: Implementing the PSA

A variety of physical problems (BVP) associated with the ODE (4) have been studi
Boundary conditions considered for liquid bridge equilibria (6) may be either pinned cont
line (Fig. 1b withro =1)

r =rj—. =1, (12)
or fixed contact anglé [22, 37],
a0 =7m—-0; al=L=0, (12)
wherez is defined by the third equation of (4) with corresponding boundary condition
z(0) = 0. (13)

Droplets with fixed contact angle (Fig. 1c) or pinned contact line may also be conside
[39]. Substrate geometry and liquid/substrate chemistry determines which is appropria
any physical situation. Single droplet equilibria can be recovered as a special case o
liquid bridge equilibria. Alternatively, the droplet problem can be formulated as a BVP on
own with a different GRS. This example will serve below to illustrate how different GRS
associated with the same physical problem deliver equivalent bifurcation diagrams.
computational aspects of the PSA are most clearly illustrated on weightless equlibria (

Consider the pinned contact line bridge with equal end digks (). In order to apply the
PSAtothis BVP, we have to establish the global coordinates spanning the GRS. As desci
in the Introduction, these coordinates (variables) consist of unspecified initial values
parameters. In our case, the only unspecified initial valugds, which, with the parameter
p, spans a 2-dimensional GRS. By using the coordinaté®) ( p) the physicalz shape
can be uniquely reconstructed by forward integration of (6) and the third equation of
Adopting the general notation of the Introduction, we havel; x; =r; xo=«, 8 =1,
v =2, UJ_EOl(O), A= P.

Note that the far-end condition in (11) is not expressed for fixed value of arclength |
as an integral constraint. This can lead to nonuniqueness. Indeed, the fuhtimp) =
fos sin(e) — L =z — L might haveseveralzeroes as we integrate forward and the far-en
condition of (11) does not distinguish between them. By labeling the subsequent value
the arclength corresponding fo=0 in increasing order &%, S, ..., we can also label
BVP solutions in a similar manner, and the BVP solution correspondiggvidl be called
a level k solution, some examples of which are given in Fig. 3a. Each solution level
generated geometrically by the intersection of the 2D GRS with a piecewise continu
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FIG. 3. Bifurcations and crossings: (a) individual solutions belonging to different levels; (b) intersecti
branches on identical and different levels (bifurcations and crossings, respectively).

(and smooth) surface; different levels belong to different surfaces. This implies that, in o
to reconstruct a BVP solution from its global coordinates, the intkgeneeded as well.

Projections of multiple solution levels onto the bifurcation diagram gives rise to tv
kinds of intersections of families. Bifurcations occur among solutions of the same le
while “crossings” occur if branches belong to different levels. These different intersecti
respond differently to perturbations. Bifurcations “break” to become “imperfect” whi
crossings persist under perturbation. Bifurcations (generic) and crossings are schemat
illustrated in Fig. 3b. For pinned liquid bridge equilibria between equal disks, for examp
the bifurcations occur at =+ /2, as is well known (e.g., [25]) and as illustrated in Fig. 5

Before the computations are described we mention another interesting qualitative fe
of the bifurcation diagram. As we have seen in the preceding subsection, the IVP’s pl
space is divided by a separatrix (C-type solution), corresponding to circular shapes. C
surprisingly, an exact “image” of this separatrix appears on the BVP’s bifurcation diagre
In the case of the IVP, faanytrajectory ¢(s), r (S)) it can be uniquely determined whether
it is inside or outside the separatrix based on the coordinatasyo$ingle point on the
trajectory. In the case of BVP solutions this point can be conveniently selected®s (
r (0)) = (x(0), 1). As a consequence, the curve

p = 2sin«(0)) (14)
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will separate BVP solutions in the GR&((Q), p). Belowthe locus of (14) we have B-type
solutions (unduloids), whilabove(14) we have D-type solutions (nodoids). Intersection:
with (14) correspond to C-type solutions (spheres). Refer to Table I.

The BVP separatrix (14) actually represents the solution branch different BVP
belonging to the same IVP. The boundary conditions for this problem are

r =1, MNzo=-1 (15)

and define single droplets (or bubbles) connected to a single disk instead of liquid brid
Although the boundary conditions (11) and (15) appear to be different, they are clos
related from the point of view of the PSA. Both BVPs have the same phase space and C
The solutions corresponding to (15) can be easily identified in the phase space, sinc
know that the only trajectory crossing the- 0 singular line is the separatrix. Consequently
(15) can have only solutions that are segments of the separatrix, and thus they are the C
circular solutions (spheres).

We have just seen how different physical problems have different BVPs correspondin
the same IVP. It is also possible to have different GRSs for the same physical problem
illustrate with the droplet problem (ODE (6)). As an alternative to (15), the droplet BVP m
be defined by conditions applied at the axis of symmetry at some (unknown) a&dght

a(0) =r(0) =0, INzeo=1 (16)

Here, the GRS isA0), p) and the end condition takes the form of a constrg(at0), p) —
b=r|,—0 — 1=0 whose solution is the bifurcation curve. As indicated above, the IVP c:
be solved in closed form for equilibria that are pieces of spheres. The bifurcation equat
in this case, is explicit,

9(z(0), p) — b= (z(0) +2/p) — (2/p)(L— (p/2HY2. 17)

This curve is plotted in Fig. 4a. This may be compared to the curve in the GRS given
(14) shown in Fig. 4b. Since both diagrams consist of a single (open) infinite line, they
topologically equivalent. Moreover, the number of turning points in pressure (local m:
ima) are preserved. This must be so since turning points in pressure correspond to the
of stable equilibria, as discussed below. For bubbles and droplets, this stability limit is
basis of the “maximum bubble pressure” method of measuring interfacial tension [33, 3

The relationship between the two diagrams (Fig. 4) can be derived analytically. Since
solution is a circular arc in thez plane, symmetrical to theaxis, z(0) can be expressed,
by trigonometry, as

_cosa(0) —1

20 = a0 (18)

Substituting (18) and (14) into (17) yields an identity.

After these preliminary remarks we proceed by describing the implementation of
PSA. The GRS, like the phase space, has the topology of a cylinder, so only soluti
with «(0) € [—n, +7] need be considered. We pick an arbitrary interpa& [p1, p2],
mesh sizex\«(0), Ap, and a valuknax and subdivide the given rectangle into rectangu
lar triangles (2D-simplices) the orthogonal sides of which are equal to the corresponc
meshsize. At each mesh point the function valfies r¢|,—. — 1, k < kmax are computed
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FIG. 4. Bifurcation curves for different GRSs show “heigl#(0) or “angle” = — «(0) against “pressurep
for the spherical droplet (or bubble). Curve (a) plots Eq. (14) and (b) Eg. (17). In a) and b) states betweel
origin and turning point are stable while those beyond the turning point are unstable.

(the indexk refers to solution level) and the functiofigare linearly interpolated inside the
simplices. If the interpolated triangle intersects the GRS inside the investigated simple
linearized piece of the solution branch has been obtained. The operations of the diffe
simplices (including the evaluation of the function and the linear algebra) can be perfort
simultaneouslyn different processors. Thus, pieces of the bifurcation diagram eme
simultaneously, just as in photographic processing. The resulting bifurcation diagrar
only approximate; however, the error at each approximate solution point can be meas
exactly by substituting into the functiofy. The solution points are stored as a 4-vector; th
two global coordinates followed by the valuelo&nd the value of the error.

We conclude this subsection by pointing out an interesting and useful feature of the C
The ODE (4) possesses a 3-dimensional phase space. However, the GRS is identica
that of (6). In a similar way, liquid bridges connecting disks of different diameters, that
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TABLE Il
Summary for Phase Spaces and GRS

ODE Phase space BC GRS
4) [a.r. 2] (11), (13) &(0), pl
4) [ 1, 7] (19), (13) (0). pl
4) a1, 7] (15), (13) (0). pl
(6) o, 1] 1y [«(0), p]
(6) [o, 1] (19) [«(0), p]
(6) [o, 1] (15) [«(0), p]

with boundary conditions
r =1 Mz=L =To, 19)

would have the same GRS. As summarized in Table Il, the GRS is identical for a variet
equations and boundary conditions. This permits one not only to compute, but also to <
and visualize the bifurcation diagrams in the same setting. Perhaps most importantl
provides a connection between the various BVPs and a means for a physical understal
to be passed from one context to another.

3. PHYSICAL INTERPRETATION OF THE RESULTS

3.1. The “Mother” Diagram: Rings and a Double Helix

Figure 5 shows the computational results in the dora@® € [—x, 7]; p € [-0.5, 3.5]
for the BVP (6, 11) and (6, 15), with = 1. (The latter one, corresponding to spherica
solutions, is analytically given by (14).) As indicated in Table I, both BVPs belong to tt
same GRS (although the function to be evaluated is different). Physical shapes correspol
to numbered points are plotted on the bottom. Observe configuration No. 15 close
bifurcationand No. 14 close to erossing Observe that special configurations Nos. 4 an
9 solve both BVPs.

The double-helical topology of the bifurcation diagram is also apparent from Fig. &
we let thea (0) = +7 edges coincide to form a cylinder. The double helix, marked wit
configurations 1, 3-9, 17, 15, 16, corresponds to symmetrical shapes, as observed alrec
[24]. Apparently a new observation is related to asymmetric shapes, which apmhaseh
periodicbranches or rings. Such a branch is marked by the configurations 13, 14, 15,
We emphasize that such global observations on the topology of the bifurcation diagran
made evident by the PSA computations, which provide a global picture in an automated\

Figure 6 shows the axonometric view of the 3&yd embedding of the bifurcation
diagram. The space was constructed by letiirg cosx(0); y = sina(0); z= p. Vertical
lines correspond te(0) = constant, horizontal circles tp=constant. Only thex(0) €
[0, ] portion of the separatrix (14) is displayed. Observe that the separatrix corresponc
aplanar cutof the cylinder, resulting in an ellipse. Figure 6a illustrates the double-helic
structure of the symmetrical branch; a few physical configurations are identified. Figure
illustrates two periodic branches, carrying asymmetrical shapes.

The physical shapes displayed in Figs. 5 and 6 have not been stored when the dia
was computed. Rather, they were re-created by identifying the relevant points of the (
on the bifurcation curve and using global coordinates to integrate the ODE forward. T
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FIG.5. Global bifurcation diagram for the = 1 weightless bridgeR = 0). (a) Plotin the&(0), p] GRS sup-
plemented by separatrix (14) and by numbered special points. (b) Physical configurations correspond to num
points.

L
EN
[~}

idea makes it easy to visualize PSA computation results interactively. One visualiza
software application is described in [12].

We speak above of “physical” shapes but many of the 20 shapes shown in Fig. 5 are
realizable in the laboratory. Equilibrium shapes may not be physically realizable bece
they violate a physical constraint (self-intersecting and/or apparatus-intersecting, e.g., N
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FIG.6. Special structure of branches displayed on the cylindrical version of the GRS. (a) Double-helical st
ture of single branch carries all symmetrical shapes. (b) Two lowest periodic branches (rings) carry asymme
shapes.

11-20) or because they are unstable. Note that the asymmetric states in the rings are
intersecting.

Whether or not a shape is unstable depends on the class of disturbances to which the
figuration is subjected. For figures of equilibrium, stability to constant-pressure, const:
volume, axisymmetric, or general perturbations (axisymmetric and non-axisymmetric
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important. For states with single-valuedz) profiles (0<«(0) < along the symmet-
ric branch), it is known that axisymmetric perturbations are more dangerous than r
axisymmetric ones [16, 32]. Moreover, it is known that the bifurcation to non-axisymmet
shapes occurs at(0) =0 [27]. Therefore, shape 1 in Fig. 5, for example, will be unstabl
to a 3D shape perturbation. We therefore restrict our attention to the(0) < 7 seg-
ments of the symmetric branch where, to determine instability, it is sufficient to consi
axisymmetric disturbances only.

For purposes here, it is sufficient to discuss instability with regard to constant-pres:
perturbations. In this case, theory dictates that the stability/instability can be read o
bifurcation diagram where pressure is the control parameter [25]. In particular, the nun
of modes of instability is related to the number of “turning points” in the bifurcation curv
For example, with regard to Fig. 5, shapes 6 and 8 both correspond to catenoids. O
stable and the other unstable. This can be readily deduced by observing that (i) shap
piece of a sphere, is known to be stable and (ii) there are no turning points between s
4 and 6 so that, according to the theory, catenoid 6 must also be stable. It then foll
that catenoid 8, separated from 6 by one turning point, is unstable with a single mod
instability. Such stability/instability results can also be obtained directly, but more tediou:
by considering the second variation of the energy functional, the solution of whose Eu
Lagrange equations are given in Fig. 5 [31].

Inthe engineering literature, liquid bridge lengtland volumeV are typically considered
as control parameters. The cylindrical state 5 (Fig. 5) exists for all lengths and goes uns
to constant-volume disturbanceslat 2, the so-called Plateau—Rayleigh limit. For this
reason, studies often include a rangeLofUsing continuation methods, Lowry [24] has
reported a double helix consistent with Fig. 5 and has documented its evolutior. witl
over arange & L < 28. He finds that succeeding pieces of the helix disconnect at spec
lengths with the first disconnection occurringlat: 9.10. He argues that this is relevant
to the physics of stabilization (efforts to suppress the Plateau—Rayleigh instability). It n
be noted that a convenient summary of the stability limits for weightless bridgjes0)
between equal diameter contaatg=-£ 1) for 0< L < 6 is available [15].

In the next subsection we generalize the BVP in order to better understand the differ:
between crossings and bifurcations and also to illustrate the power of the PSA for stud
multi-parameter problems.

3.2. Unequal Disks: Bifurcation Diagrams as Level Sets

As summarized in Table Il, there are many different extensions of the BVP (6, 11) wh
can be investigated in the same GRE]), p]. We first discuss the case of unequal disks (1)
Boundary conditions (11) are replaced by (19). The bifurcdtioetion(1) g(«(0), p) — 1
is replaced by («(0), p) — ro. This implies that bifurcation diagrams corresponding to dif
ferent values ofy not only can be plotted in the same plane (same GRS), but also emerg
level set®of the same surfaag(« (0), p). Since, as illustrated in Fig. 3, solutions can belon
to different levels, we are investigating multiple, piecewise smooth surfaces simultaneot

If two intersecting curves of they =1 “mother” diagram happen to belong to the sam
level, then a slight variation of results in slicing the same smooth surface with an adjacel
parallel plane, producing an unfolding of the bifurcation point in the sense of element
catastrophe theory [29]. However, if the intersecting curves belortifferent surfaces
then transversality is robust and a small variatiompWill not change the local picture
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14 15 28

FIG. 7. Global bifurcation diagraml(= 1, B = 0) for unequal disks. (a} = 0.95; (b)r, = 1.05; (c) diagram
with ro=0.95; 1.00; 1.05 plotted simultaneously. Observe the unfolding of bifurcation points (15, 20) and
persistence of crossings (14).

gualitatively. The above features are nicely illustrated in Fig. 7, showing+ke0.95;
1.00; 1.05 diagrams. Observe that the bifurcation points correspond to the intersec
of the double helix of symmetric solutions with the periodic asymmetric branches. Th
bifurcation points all lie on two vertical lineg(0) = -7 /2. One also observes the crossings
as transversally intersecting curves. These are preserved under perturbation.

This observation leads to an immediate result, a new result, as far as we are aware
range of pressure stability, [@min], decreases ag decreases. That igmin < 0 increases
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LEVEL 1

p=2sin(c(0))

/|0

LEVELS1 + 2+ 3

a2 2

LEVEL 2

closed loop

2 w2

LEVEL 3

FIG. 8. Level 1+ Level 2+ Level 3 show BVP solutions for.05<r, <1.1. Level 1, 2, and 3 solutions are
displayed separately on right. Observe edags, ¢ corresponding to discontinuities (cuts). Bottom left sketch
illustrates the topology of the assembly, showing a closed loop. Observe closed loop on upper bifurcation dia
shrinking onto ¢ (0), p) = (/2, 2) asr, — 0.

asro decreases (cf. Fig. 8, level 1). This behavior is physically reasonable since the ave
slenderness increases fgr< 1 and decreases fog > 1. Increasing (decreasing) average
slenderness destabilizes (stabilizes). Note especially that the level set feature make
a global result, true for all & rg <1, for example. Contrast this to what a perturbatiol
calculation would deliver. Results for corresponding volume-stability limits for uneqt
supports have been obtained by a conventional approach [36].

As noted in Fig. 7a, in the case f < 1, the diagram consists of disconnected, isolate
loops. (One of the key advantages of the PSA is that it makes possible to compute
diagrams.) If we decreasgfurther, the loops shrink and at some critical value they becon
isolated points and then disappear. The interpretation of such an isolated point is clee
the lowest loop, as illustrated in Fig. 8.

As ro— 0 we obtain a hemisphere as limiting solution, which is alsodt® = /2
solution on the separatrix (14) corresponding to the single droplet. This is a degenerate |
It has been discussed with respect to volume-stability limits in [34]. A small perturbatior
the boundary conditions will result in the disappearance of the solution. Similarly degene
states also exist for the other rings; however, their physical interpretation is less obvi
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-/2 0.0 /2

FIG. 9. Global bifurcation diagrams fot =1 bridge under gravityB = —0.05, 0.0, 0.05. Observe point
marked by arrow indicating that imperfect diagrams do not represent slices of a surface represented by a fun
in contrast to Figs. 7 and 8.

As Fig. 8 illustrates, the smooth bifurcation curves live on nonsmooth, noncontinuc
surfaces “assembled” along discontinuities. The bottom left sketch in the figure illustre
the topology of such an assembly: the closed loop illustrated is toplogically equivalen
therg < 1 loops observed in Fig. 7 and 8.

The PSA can be used to explore other parameter-dependent global behavior. Figt
illustrates theB = —0.05; 0; 0.05 global diagrams for the pinned—pinned bridge und
gravity, associated with Eq. (4) and boundary conditions (11). We can olisgaiitatively
the same phenomenon with respect to bifurcation points as in the case of unequal ¢
However, observe the point marked by the arrow. Superposed bifurcation diagrams i
sect near a generic bifurcation point, indicating that different valuds iofiply different
functionsg(«(0), p) in (1), in contrast to the case of different values @fFor equal end-
plates, pressure-stability limits for bridges under gravity [25] and volume-stability limits f
nonzero gravity [35] have been reported, both using conventional computational approac

4. CONCLUSIONS

A novel algorithm (PSA) for obtaining families of solutions of two-point boundary valu
problems is described. The approach is based on integrating the underlying IVP in paré
from a grid of initial conditions. Application of the PSA to the study of bifurcation diagran
for liquid equilibria highlights several advantages of the algorithm.

Isolated branchesFamilies of solutions that are not connected to other branches
readily captured. Inthe liquid bridge example, isolas on the cylinder occur with perturbati
of gravity (B ## 0) and of disk inequalityrg # 1).
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Global diagrams An immediate global overview of the bifurcation diagram is pro
vided. This gives, for example, a quick recognition of the rings and the double helix struct
for the weightless bridge (Fig. 6). Global information is valuable since regions that are n
physical for one set of parameter values can become physical for another, that is, u
problem deformation.

Diagram deformation Snapshots of how a bifurcation diagram “deforms” as the prol
lem deforms are readily accessible. For example, disk inequality breaks the double heli
the cylindrical phase space in one of two ways: into a simply connected or into a non-sin
connected loop, depending on whethgk 1 orrg > 1 (Figs. 7a and 7b).

Deformation is helpful in understanding families of problems. By varying end disk diamet
the liquid droplet is recovered as a limiting case of the liquid bridge. Varying end di
diameter deforms bifurcation diagrams as a sequence of “level sets” of an underl
function. Powerful results are available in such cases. Complications due to the fact
bifurcation curves are patched together from several functions can be resolved (e.qg., Fi
Some new stability results are obtained using the approach.

We have shown that one BVP can have more than one GRS. This observation raise
guestion (an open question) as to whether there is a “preferred” GRS for the understar
of a particular BVP deformation.

The main limitation of the PSA is due to computational demand. The cost of tiling t
GRS into simplices grows exponentially with the dimension of the problem. (Diagra
for the 2D liquid bridge problem can be computed on a desktop.) Currently, the PS/
restricted to low-1f < 10) dimensional BVPs. Far> 2 problems, computational resolution
of the intersections of hypersurfaces can yield spurious solutions which have to be filt
separately [14].

We envision the PSA as aomplementto path-continuation techniques. For low-
dimensional problems (model problems), it gives a relatively complete picture. For higt
dimensional problems, its role is to facilitate the global understanding of diagrams a
initial stage. For example, it could be used to scan the parameter space at low resolt
Diagrams could be subsequently refined by using path continuation.
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